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Phase-field model of dendritic sidebranching with thermal noise
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We investigate dendritic sidebranching during crystal growth in an undercooled melt by simulation of a
phase-field model which incorporates thermal noise of microscopic origin. As a nontrivial quantitative test of
this model, we first show that the simulated fluctuation spectrum of a one-dimensional interface in thermal
equilibrium agrees with the exact sharp-interface spectrum up to an irrelevant short-wavelength cutoff com-
parable to the interface thickness. Simulations of dendritic growth are then carried out in two dimensions to
compute sidebranching characteristics~root-mean-square amplitude and sidebranch spacing! as a function of
distance behind the tip. These quantities are compared quantitatively to the predictions of the existing linear
WKB theory of noise amplification. The extension of this study to three dimensions remains needed to
determine the origin of noise in experiments.@S1063-651X~99!02010-3#

PACS number~s!: 05.70.Ln, 81.30.Fb, 64.70.Dv
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I. INTRODUCTION

Dendrites are intricate growth patterns that make up
microstructure of many important commercial alloys@1,2#.
They develop a complex shape due to the emission of
ondary branches behind the growing tips of prima
branches@3#. A major advance in understanding this dynam
cal process came historically from the insight@4,5# that re-
sults of Zel’dovichet al. @6# on the stability of flame fronts
could be extended to other interfacial pattern forming s
tems such as dendrites, viscous fingers, etc. For dend
further developments along this line@7–11# led to a physical
picture where small noisy perturbations, localized initially
the tip, become amplified to a macroscale along the side
steady-state needle crystals, thereby giving birth to s
branches@7–11# in qualitative agreement with some expe
ments@12#.

This sidebranching mechanism requires some continu
source of noise at the tip. Therefore, thermal noise, origin
ing from microscopic scale fluctuations inherent in bulk m
ter, is the most natural and quantifiable candidate to cons
Langer @10# analyzed the amplification of thermal nois
along the sides of an axisymmetric paraboloid of revolut
and concluded from a roughestimatethat it is probably not
strong enough to explain experimental observations,
sidebranches form closer to the tip in experiment than p
dicted on the basis of thermal noise amplification. More
cently, Brener and Temkin@11# made the interesting obse
vation that noise is amplified faster along the more gen
sloping sides of anisotropic~nonaxisymmetric! needle crys-
tals, leading to the conclusion that thermal noise has ab
the right magnitude to fit experimental data.

There remain, however, several sources of uncertain
regarding this conclusion. First, calculations of noise am
fication have been based on a WKB~Wentzel-Kramers-
Brillouin! approximation which has only been tested
comparison@8# with numerical simulations@9# for a fixed
frequency perturbation localized at the tip. Thermal noise
more difficult to analyze because it involves a wide range
PRE 601063-651X/99/60~4!/3614~12!/$15.00
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frequencies and is spatially distributed. Consequently, c
rent estimates of the sidebranching amplitude@10,11# in-
volve some overall prefactor which is only known approx
mately. Secondly, the predicted sidebranching amplitu
depends sensitively on the nonaxisymmetric tip shape wh
seems to vary from system to system. Bisang and Bilgr
@13# have found that the tip of xenon dendrites is well fitt
by the power lawx;z3/5 @14,15# ~as opposed tox;z1/2 for a
paraboloid!, wherez is the distance behind the tip andx is
the radial distance from the growth axis to the interface.
contrast, LaCombeet al. @16# find that the tip shape of suc
cinonitrile dendrites is well described up to 10r ~wherer is
the tip radius! behind the tip by a weak fourfold deviatio
from a paraboloidx;z1/2. Since thez3/5 power law should
only strictly hold far behind the tip@14,15#, the proposal@11#
that it can be used to predict the sidebranching amplit
remains to be validated beyond the experiments of Bis
and Bilgram@13#. Lastly, analyses of sidebranching have
far been constrained to a linear regime. Therefore, there
mains the possibility that nonlinearities produce a noisy lim
cycle where sidebranches drive tip oscillations.

At present, it appears to be difficult to make furth
progress on these issues without some reliable computati
approach to accurately simulate dendritic growth with th
mal noise. Numerical simulations of dendritic growth using
phase-field approach are consistent with a noise amplifi
tion scenario in that sidebranches are absent in purely de
ministic simulations where the diffuse interface region
well resolved @17–22#. Moreover, in certain simulations
sidebranching has been induced by randomly driving the
@17,18# in a fashion which is adequate to produce dendr
microstructures, but not to investigate quantitatively t
physical origin of sidebranching. In addition, in fron
tracking simulations@23#, sidebranching appears to be due
the amplification of numerical noise which is difficult to con
trol.

The first goal of this paper is to demonstrate that
phase-field approach@24,25# can be successfully extended
study the effect of thermal noise quantitatively. The seco
3614 © 1999 The American Physical Society
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PRE 60 3615PHASE-FIELD MODEL OF DENDRITIC . . .
goal is to use this approach to carry out a quantitative st
of sidebranching in order to test the predictions of the lin
WKB theory of noise amplification@10,11#. Here, simula-
tions are restricted to two dimensions in order to carry
this comparison in the simplest nontrivial test case. There
two main reasons to elect a phase-field approach to s
thermal noise. First, this approach has proven extremely
cessful to simulate dendritic growth@17–21#. By reformulat-
ing the asymptotic analysis of the phase-field model, it
recently been possible to lower the accessible range of
dercooling as well as to choose an arbitrary small interf
kinetic coefficient@21#. In addition, adaptive mesh refine
ment methods, used in combination with the reformula
asymptotics, have pushed the limit of undercooling even
ther towards the experimental range@22#. Secondly, the
phase-field approach provides a natural framework to inc
porate thermal noise since it is adapted from phenomenol
cal continuum models of second order phase transitions u
to study fluctuations near a critical point@26#. Therefore, the
formalism to incorporate noise into such models already
ists. The extension to the phase-field model mainly requ
the use of the fluctuation-dissipation theorem together w
an appropriate scaling of parameters to relate the magni
of the noise in the model with the noise that is present in
experiment. This straightforward exercise is carried out h
An additional issue is the numerical resolution of a sm
amplitude noise which could be masked by the numer
noise and/or discretization artifacts that are present in si
lations. This problem is absent in studies of phase transit
where the bare magnitude of the noise is not important. H
however, this magnitude plays a crucial role. Fortunately,
shall find that it is possible to resolve accurately a sm
amplitude noise, of magnitude comparable to experim
provided that the spatially diffuse interface region is w
resolved.

In the context of this study, we are naturally led to revi
the issue of the relative importance of the noises acting in
bulk and at the interface, which was previously considere
the context of a sharp-interface model@27#. Microscopically,
the bulk noise originates from fluctuations in the heat curr
in the solid and liquid phases, whereas the interface n
originates from the exchange of atoms between the
phases~i.e., the attachment and detachment of atoms at
interface!. In Ref. @27#, it was shown by a direct calculatio
of the equilibrium fluctuation spectrum of a flat interface th
the bulk and interface noises drive, respectively, lon
wavelength (l.l* ) and short-wavelength (l,l* ) regions
of this spectrum, where the crossover lengthl*
54pcD/mL. Here,c is the specific heat per unit volume,D
the thermal diffusivity,L the latent heat of melting per un
volume, andm the interface kinetic coefficient. On this bas
it was roughly estimated that the bulk noise should predo
nantly drive sidebranching wheneverl* ,lS , where lS

;ADd0 /V is the stability length below which perturbation
of the interface are stable,V is the tip velocity, andd0 is the
capillary length. This condition is actually satisfied f
growth at low velocity where simple estimations allow o
to conclude thatlS@l* for materials with reasonably fas
attachment kinetics. In the phase-field model, the bulk
interface noises are represented by Langevin forces add
the evolution equations for the temperature and phase fie
y
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respectively. It is therefore possible to probe the relative
portance of these two noises. In this paper, we focus on a
velocity limit where the bulk noise should be dominant a
cording to the above estimate. We observe indeed that s
branching is unaffected when the noise is switched off in
evolution equation for the phase field, and only the co
served noise is kept in the diffusion equation.

This paper is organized as follows. In Sec. II, we revie
the sharp-interface equations of solidification with therm
noise and certain useful results of fluctuation theory. In S
III, we introduce the phase-field model and analyze its eq
librium fluctuation properties, which allows us to relate t
parameters of this model to the known material parame
that enter in the sharp-interface model. In Sec. IV we th
discuss the numerical implementation of the model a
present the results of a detailed numerical test based on c
paring the simulated and analytically predicted fluctuat
spectra of a stationary interface in thermal equilibrium. Ne
in Sec. V, we present the results of the simulations of d
dritic growth and a quantitative comparison of the sid
branching characteristics~amplitude and sidebranch spacin!
of a steady-state growing dendrite to the analytical pred
tions of the WKB theory. Finally, concluding remarks a
presented in Sec. VI.

II. SHARP-INTERFACE MODEL

We consider the standard symmetric model with eq
thermal diffusivities in the solid and liquid phases. The i
corporation of fluctuations in this model, with reference
earlier works, is discussed in detail in Ref.@27# and we only
review here the main results. The basic equations of
model are given by

] tT5D ¹2T2¹W • jW, ~1!

LVn52c D n̂•~¹W Tu l2¹W Tus!1c n̂•~ jWu l2 jWus!, ~2!

TI5TM2G k 2
Vn

m
1h, ~3!

whereT(rW,t) is the temperature field defined in terms of t
three-dimensional position vectorrW5xx̂1yŷ1zẑ, TI is the
interface temperature,TM is the melting temperature,G
5gTM /L is the Gibbs-Thomson coefficient whereg is the
surface energy,Vn is the normal velocity of the interface
¹W Tu l (¹W Tus) is the temperature gradient evaluated on
liquid ~solid! side of the interface,k is the interface curva-
ture, and other parameters were defined in Sec. I. The c
served noise,jW5 j xx̂1 j yŷ1 j zẑ, represents the fluctuatin
part of the heat current, where the componentsj m , with m
5x,y,z, are random variables uncorrelated in space and t
that obey a Gaussian distribution. The variance of this dis
bution,

^ j m~rW,t ! j n~rW8,t8!&52
DkBT~rW,t !2

c
dmnd~rW2rW8!d~ t2t8!,

~4!
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3616 PRE 60ALAIN KARMA AND WOUTER-JAN RAPPEL
is fixed by the requirement that the diffusion equation driv
by this noise produces, in equilibrium, the known distrib
tion of temperature fluctuations in the solid and liqu
phases, which is a simple application of the fluctuatio
dissipation theorem. According to basic principles of sta
tical physics@28#, the mean-square fluctuation of the tem
perature in a small volumeDV of solid or liquid is given by
@28#

^DT2&5
kBTM

2

cDV
, ~5!

wherekB is the Boltzmann constant, which is precisely t
result that one obtains from a simple calculation of^DT2&
using Eq.~1! with jW defined by Eq.~4!. Note that, in a non-
equilibrium situation, the temperature variation in the liqu
is small compared to the melting temperature, such
T(rW,t) can be replaced byTM on the right-hand side of Eq
~4!.

Next, to write down the correlation of the nonconserv
noise that enters in the interface condition~3!, it is conve-
nient to define the interface position,z(rW' ,t)[zint(rW' ,t),
whererW'5xx̂1yŷ is the two-dimensional position vector i
the plane perpendicular to thez axis. The interface tempera
ture is then simply given byTI5T(rW int ,t), where rW int5rW'

1z(rW' ,t) ẑ. We can assume, without loss of generality, th
the interface is locally single valued~i.e., no overhang! with
respect to this set of coordinates;h(rW' ,t) is then Gaussianly
distributed with a variance defined by

^h~rW' ,t ! h~rW'8 ,t8!&52
kB TI

2

m L

d~rW'2rW'8 ! d~ t2t8!

A11u¹W 'z~rW' ,t !u2
,

~6!

where the square root in the denominator of Eq.~6! is a
simple geometrical factor introduced such that the net fo
on a small areadSof the interface is independent of its loc
orientation @27#, and ¹W '5 x̂]x1 ŷ]y denotes the two-
dimensional gradient vector in the plane of the interface. T
application of the fluctuation-dissipation theorem for th
noise requires that its variance be chosen such that the s
interface model reproduces the known fluctuation spect
of a stationary interface in thermal equilibrium, derived an
lytically in the next section~see also@27#!:

S~k![^zkz2k&5
kBTM

g k2
, ~7!

wherezk is the Fourier coefficient of the interface displac
ment, i.e.,

z~rW'!5E d2k

~2p!2
eik•W rW' zk . ~8!

A straightforward but lengthy calculation described in R
@27# shows that Eqs.~1!–~3!, with the noises defined by Eqs
~4! and ~6!, yields this spectrum in equilibrium.
n
-

-
-

at

t

e

e

rp-
m
-

.

III. PHASE-FIELD MODEL

The Langevin formalism to incorporate fluctuations in
continuum models of phase transitions is well establish
@26#, and the same procedure can be followed for the pha
field model. As in the sharp-interface model@27#, we pro-
ceed by adding stochastic forces whose magnitudes are
termined by making contact with equilibrium properties. F
this purpose, it is convenient to express the phase-fi
model in terms of the dimensionless temperature field

u5
T2TM

L/c
, ~9!

and the local enthalpy per unit volume defined by

H5e0S u2
p~f!

2 D , ~10!

wheree0 is a constant with units of energy per unit volum
f is the phase field chosen to vary between21 in the liquid
and 11 in the solid, andp(f) is some monotonously in
creasing function off with the limiting valuesp(61)5
61. The phase-field model expressed in terms of these v
ables takes the form

]f

]t
52Gf

dF
df

1 u~rW,t !, ~11!

]H

]t
5GH ¹2

dF
dH

2¹W •qW ~rW,t !, ~12!

which is a form similar to Model C of Halperin, Hohenber
and Ma@26#, i.e., with coupled nonconserved (f) and con-
served~H! order parameters, which is most naturally suit
to add fluctuations. The fact thatH is conserved, which fol-
lows from Eq. ~12!, simply reflects the fact that the tota
energy in a given volume is conserved in the absence
energy fluxes through the surfaces bounding this volum
Next, the free energy is defined by

F5E d3r FK

2
u¹W fu21h0 f ~f!1e0

u2

2 G , ~13!

whereh0 and K are constants with units of energy per un
volume and per unit length, respectively, andf (f) is a
double well potential with minima atf561. Specific
choices forp(f) and f (f) will be given in the next section
to carry out the computations. Finally, the noises are Gau
ianly distributed with variances

^u~rW,t !u~rW8,t !&52GfkBTMd~rW2rW8!d~ t2t8!, ~14!

^qm~rW,t !qn~rW8,t !&52GHkBTM dmnd~rW2rW8!d~ t2t8!.
~15!

Let us now briefly analyze the equilibrium bulk and inte
face fluctuations in this diffuse interface model in order
make contact with the sharp-interface model of the preced
section. As is well known, the probabilityP@f,u;t# of find-
ing the system in a given configuration,f(rW,t) and u

5u(rW,t), at time t is governed by a generalized Fokke
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PRE 60 3617PHASE-FIELD MODEL OF DENDRITIC . . .
Planck equation@26# associated with the Langevin equatio
~11! and ~12!. For a general nonequilibrium situation, th
Fokker-Planck equation has no known analytical solution
equilibrium, however, it has a time-independent station
solution

Peq@f,u#5
1

Z
expS 2

F
kBTM

D , ~16!

which allows us to calculate analytically the equilibriu
Gaussian fluctuations. Here,

Z[E DfDu expS 2
F

kBTM
D ~17!

is the equilibrium partition function whereDf andDu de-
note functional integration over the fieldsf and u, respec-
tively. Let us first calculate the temperature fluctuations
the bulk phases. Sincef is constant in the solid or liquid
only the term;u2 in the integrand ofF needs to be kept
Consequently, Eq.~16! implies that the fluctuation ofu in-
side a small volumeDV is given by

^u2&5E
2`

1`

du u2 expF2
DVe0

kBTM

u2

2 G Y E
2`

1`

du

3expF2
DVe0

kBTM

u2

2 G , ~18!

which yields at once the result

^u2&5
kBTM

e0DV
. ~19!

Now comparing Eq.~19! with Eq. ~5! allows us to determine

e05
L2

TMc
. ~20!

This result can be obtained, alternatively, by comparing
phase-field equations~12! and ~15!, in a region wheref is
constant, with the sharp-interface equations~1! and ~4!,
which yields, in addition, the expression for the diffusio
constant

D5
GH

e0
. ~21!

Next, the equilibrium fluctuations of a stationary interfa
can be calculated provided that we restrict our attention
wavelengths that are large compared to the width of the s
tially diffuse interface region. Let us consider the fluctu
tions about a flat interface in the planez50. For a small
amplitude deformation,z(rW'), which varies slowly on the
scale of the interface thickness, the phase field can be
proximated in the form

f~rW !'f0„z2z~rW'!…, ~22!

wheref0(z) is the solution of the one-dimensional statio
ary interface problem
n
y

n

e

o
a-
-

p-

K
d2f0~z!

dz2
1h0 f f„f0~z!…50, ~23!

where we have definedf f[d f /df. We can then evaluate
the gradient term in Eq.~13! using Eq.~22!, which yields

¹W f~rW !'
df0

dz
@ ẑ2¹W 'z~rW'!#. ~24!

Next, we substitute Eqs.~22! and ~24! into Eq. ~13!, which
allows us to express the probability distribution~16! directly
in terms ofz(rW') instead off(rW). One immediate simplifi-
cation is that the one-dimensional part*dz of the volume
integral*d3r 5*d2r *dz in Eq. ~13!, whered2r[dxdy, can
be carried out explicitly. The resulting integrals proportion
to *dz f(f0„z2z(rW')…) and*dz(df0 /dz)2, where the sec-
ond integral originates from the term (df0 /dz) ẑ on the
right-hand side of Eq.~24! give only constant contributions
independent ofz(rW'). They do not affect the fluctuation
probability since they can be factored out of both the n
merator exp(2F/kBTM) and the denominatorZ of Eq. ~16!.
Only the gradient term on the right-hand side of Eq.~24!
gives a nontrivialz-dependent contribution and leads to t
expression for the probability distribution of interface flu
tuations

P@z~rW'!#5
1

Z
expS 2

g

kBTM
E d2r

1

2
u¹W 'z~rW'!u2D , ~25!

where

Z5E Dz expS 2
g

kBTM
E d2r

1

2
u¹W 'z~rW'!u2D , ~26!

and

g5AKh0 E
2`

1`

dz̄Fdf0

dz̄
G 2

[AKh0 I ~27!

is the surface energy; the integralI defined in terms of the
dimensionless variablez̄5zAh0 /K is a numerical constan
that depends on the form off (f). The result of Eq.~7! stated
earlier is now simply obtained by changing variables fro
z(rW') to zk in the probability distribution above, and by us
ing this distribution to calculatêzkz2k&, which only in-
volves a Gaussian integral. This simple exercise shows
the interface fluctuations in the phase-field model are ide
cal to those of the sharp-interface model on scales larger
the interface thickness, i.e.,k21@AK/h0, as one would na-
ively expect. Finally, Eqs.~20! and~27! can be used to relate
the parameters of the phase-field model to the capill
length,d05gTMc/L2, which yields

d05IAKh0

e0
2

. ~28!
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IV. NUMERICAL IMPLEMENTATION

A. Choice of functions and scalings

To carry out numerical simulations, it is convenient
choose the functions

f ~f!52f2/21f4/4, ~29!

p~f!515~f22f3/31f5/5!/8, ~30!

where Eq.~29! is the standard quartic form of the doub
well potential and the form~30! has the advantage that
preserves the minima off at 61 independently of the loca
value ofu @29#. The one-dimensional stationary profile sol
tion of Eq. ~23! is then given by

f0~z!52tanhS z

A2W
D , ~31!

where

W5AK

h0
~32!

is the interface thickness. Evaluating the integral in Eq.~27!
with the above form off0(z) yields I 52A2/3.

It is useful to express the phase-field equations in a
mensionless form that minimizes the number of compu
tional parameters and that renders the interpretation of
noise magnitude in the phase-field model more transpar
For this purpose, it is useful to define, in addition toW, the
time

t5
1

Gf h0
, ~33!

which characterizes the relaxation off to one of its local
minima, and the coupling constant@30#

L5
e0

Jh0
5

I

J

1

d̄0

, ~34!

expressed in terms of the scaled capillary length

d̄05
d0

W
. ~35!

Here, J516/15 is a constant whose value is fixed by t
choice ofp(f) @21#. We then measure all lengths in units
W and time in units oft, and define accordingly new dimen
sionless coordinates, diffusivity, and noise variables, via
substitutions

rW/W→rW, ~36!

t/t→t, ~37!

Dt/W2→D, ~38!

tu→u, ~39!
i-
-
e

nt.

e

t

e0W
qW →qW . ~40!

Transforming the phase-field equations~11! and ~12! with
the help of these substitutions, and using the fact thatd(rW

2rW8) and d(t2t8) on the right-hand side of Eqs.~14! and
~15! have dimensions of (length)2d, whered is the dimen-
sion, and inverse time, respectively, we obtain the dim
sionless form

]f

]t
5¹2f1f2f32L u ~12f2!21u~rW,t !, ~41!

]u

]t
5D ¹2u1

1

2

]p~f!

]t
2¹W •qW ~rW,t !, ~42!

with

^u~rW,t !u~rW8,t !&52Ff d~rW2rW8!d~ t2t8!, ~43!

^qm~rW,t !qn~rW8,t !&52 D Fu dmnd~rW2rW8!d~ t2t8!,
~44!

and the definitions

Fexpt5
kBTM

2 c

L2d0
d

, ~45!

Fu5
kBTM

2 c

L2Wd
5d̄0

d Fexpt, ~46!

Ff5LJ Fu . ~47!

The above definitions allow us to relate the magnitude of
noise which enters into the phase-field model,Fu , with the
magnitude of the noise in experiments,Fexpt. Comparing the
right-hand side of Eq.~45!, for d53, with the right-hand
side of Eq.~19!, we can readily see thatFexpt is simply equal
to the mean-square fluctuation ofu inside a microscopic vol-
ume d0

3, and is a fixed quantity for a given material.~Note
that Fexpt can also be written in the formkBTM /gd0

2, which
is the square of the ratio of two microscopic length
AkBTM /g andd0.! The first equality in Eq.~46! implies that
Fu is the mean-square fluctuation ofu inside a microscopic
volumeW3. The second equality dictates how to chooseFu
in a simulation for a given system (Fexpt) and a given choice
of computational parameter,d̄0. The dependence on the latte
quantity has a simple physical interpretation. Namely, if o
choosesd̄0 to be small compared to unity, which is the ma
gain in computational efficiency resulting from the reform
lated asymptotics of Ref.@21#, then one must scale down th
magnitude of the noise in the phase-field model to keep
fluctuation strength in a physical volumed0

3 constant. The
main practical conclusion here is that one still has the co
putational freedom to choose the interface thickness if
rescales appropriately the noise strength.
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B. Discretization

The phase-field equations~41! and~42! are discretized on
an N3N square lattice of spacingDx5Dz using centered
finite difference formulas, as described in Ref.@21#, and the
equations are time stepped using a first order Euler sch
with a time stepDt. The only new elements here are th
noises. To see how to discretize them, letiDx and j Dz de-
note the position on the lattice alongx and z, respectively.
For the nonconserved noise, we generate one random n
ber per lattice site,u i j , chosen from a Gaussian distributio
with a variance

^u i j u i 8 j 8&5
2Ff

Dt Dx2
d i i 8d j j 8 , ~48!

where the factors 1/Dt and 1/Dx2 on the right-hand side o
Eq. ~48! are related to the inverse time and the inverse a
~inverse volume in three dimensions! scalings ofd(t2t8)
and d(rW2rW8), respectively, in the correlation of the noise
u i j is then added to the deterministic part of the right-ha
side of Eq.~41! discretized at site (i , j ).

To discretize the conserved noise, we define byqx,i j the
current on the bond that links site (i , j ) with site (i 11,j ),
and byqz,i j the current on the bond that links site (i , j ) and
( i , j 11). We then generate at each time step two indep
dent random numbers per site,qx,i j andqz,i j , chosen from a
Gaussian distribution with a variance

^qm,i j qn,i 8 j 8&5
2DFu

Dt Dx2
dmnd i i 8d j j 8 . ~49!

The divergence of the current on the right-hand side of
~42! at site (i , j ) is then discretized in the form

~¹W •qW ! i j 5@qx,i j 2qx,i 21 j1qz,i j 2qz,i j 21#/Dx. ~50!

C. Planar interface fluctuation spectrum

As a nontrivial test of the numerical implementation
the phase-field model, we first calculate the fluctuation sp
trum of a one-dimensional stationary interface in therm
equilibrium and compare this spectrum to the analytical p
diction ~7!. With length measured in units ofW, Eq. ~7!
becomes

S~k!5
Fu

d̄0k2
, ~51!

where d̄05I /(JL)55A2/8L for the present choice o
phase-field model.

To calculateS(k), phase-field simulations were carrie
out with periodic boundary conditions inx on a lattice of size
512350 with Dx50.8. We used initial conditions that co
respond to a flat interface inside a system uniformly at
melting temperature, which corresponds to choosingf
5f0(z)52tanh(z/A2) and u50. The interface profile,
z(x), is defined byf„x,z(x)…50, and is calculated by find
ing the f50 contour of the phase field by interpolation
e

m-

a

.
d

n-

.

c-
l
-

e

each time step. The complex amplitude,zk , is then calcu-
lated by a one-dimensional fast Fourier transform wherezk
andz(x) are related by

z~x!5E dk

2p
eikx zk , ~52!

Finally, S(k)5^uzku2& is calculated by taking a time averag
of uzku2. Long simulations with typically 105 to 106 time
steps were necessary to obtain good statistics. These c
lations were carried out by using Eq.~42! with both p(f)
defined by Eq.~30! and p(f)5f. Note that the constantJ
516/15 is the same for both choices@21# since the form of
the phase-field equation~41! is unchanged, and thus derive
from p(f) defined by Eq.~30! in both cases. Of course, wit
Eq. ~41! unchanged and the choicep(f)5f in Eq. ~42!, the
phase-field equations are no longer variational~i.e., derivable
from a Lyapounov functional!, but the sharp-interface limi
remains identical and the interface can be resolved wit
largerDx, as shown previously@21#. The spectra for the two
choices ofp(f) were found to be virtually indistinguishabl
such that only the results forp(f)5f are reported here. In
the dendritic growth simulations presented below, we w
restrict our attention solely to the case wherep(f)5f is
used as the source of latent heat in the heat equation.

Spectra obtained for a typical set of computational para
eters are compared in Fig. 1 with the analytical predict
~51!, represented by a thick solid line, both for the ca
where the nonconserved and conserved noises are add
the phase-field equations~thin solid line with FuÞ0 and
FfÞ0) and for the case where the nonconserved nois
switched off in thef equation~dashed line withFuÞ0 but
Ff50). With both noises present, the calculated spectr
agrees well with the theoretical prediction up to a cutoff ink
of order unity~corresponding to a wavelength comparable
the interface thickness in physical units!. With only the con-
served noise present (Ff50), the simulated spectrum fol
lows initially well the predicted 1/k2 law with increasingk,

FIG. 1. Simulated spectra of a one-dimensional interface in th
mal equilibrium with both nonconserved and conserved noises~thin
solid line! and only the conserved noise~dashed line!, compared to
the theoretical prediction of Eq.~51! ~thick solid line!. Length is
measured in units ofW. Parameters used in simulations areL51,
D51, andFu50.005.
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3620 PRE 60ALAIN KARMA AND WOUTER-JAN RAPPEL
but then drops off rapidly to a very small amplitude at lar
k. This dropoff is consistent with the analytical prediction
Ref. @27# and is due to the extra dissipation at the interfa
that damps out short scale fluctuations.

D. Incorporation of anisotropy

In order to investigate dendritic sidebranching in the n
section, we incorporate anisotropy as other authors h
@31,32# by letting the coefficient of the gradient energy ter
in the free energy depend on the normal to the solid-liq
interface,n̂5¹W f/u¹W fu. Following this change, Eq.~42! re-
mains unchanged and Eq.~41! becomes

f k~ n̂! ] tf5f2f32L u ~12f2!21¹W •@ f s~ n̂!2¹W f#

1 (
m5x,z

]mS u¹W fu2f s~ n̂!
] f s~ n̂!

]~]mf!
D 1u~rW,t !,

~53!

where we have defined the anisotropy function for a cry
with an underlying cubic symmetry

f s~ n̂!5123e414e4~]x
4f1]z

4f!/u¹W fu4. ~54!

We neglect the orientation dependence of the noise stren
which is in principle simple to include, and therefore defi
the variance ofu(rW,t) by Eq. ~43!. This turns out to be un-
important here since this noise does not affect sidebranc
in the simulations presented in the next section. As in
previous study of dendritic growth without noise@21#, we
use the result of a reformulated asymptotic analysis of
phase-field model together with a method to compute lat
corrections to the surface energy and kinetic anisotrop
Moreover, we focus on a choice of computational parame
that makes 1/m vanish in the interface condition~3!. The
effective anisotropy of the phase-field model, which includ
lattice corrections, is given at orderDx2 by

ee5e42Dx2/240. ~55!

Here, we useDx50.8, and input the valuee450.032 66 into
Eq. ~54! to obtain an effective anisotropyee50.03 when
comparing our results to the sharp-interface solvabi
theory. This 3% anisotropy leads to a relatively large st
ness anisotropy 15ee50.45. This choice was made to allo
us to carry out long simulation runs that are necessary
calculate accurately noise-averaged quantities such as
sidebranching amplitude and spacing on a uniform grid. D
creasing the anisotropy at fixed undercooling reduces the
terface velocity~increases the diffusion length! and thus in-
creases substantially the computational domain size
simulation time. In addition, this stiffness is comparable
that of Pivalic acid~PVA! used in dendritic growth experi
ments@33#. ~The most recent anisotropy measurement@34#
yields a 2.5% surface energy anisotropy equivalent to a s
ness anisotropy of 0.375.! To make the interface kinetic con
tribution vanish at orderDx2 we choose

f k~ n̂!5
123d14d~]x

4f1]z
4f!/u¹W fu4

11d
, ~56!
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where the value ofd is computed, together with an orde
Dx2 correction toL, in order to make 1/m vanish in Eq.~3!,
as described in@21#. The resulting computational paramete
are summarized in Table I.

Lastly, in terms of our dimensionless units, where leng
time, and velocity, are scaled in units ofW, t, and W/t,
respectively, and without interface kinetics, the thin-interfa
limit of the phase-field model is the standard free-bound
problem:

] tu5D ¹2u2¹W •qW , ~57!

Vn52D n̂•~¹W uu l2¹W uus!1n̂•~qW u l2qW us!, ~58!

uI52d̄0~1215ee cos 4a! k, ~59!

whereqW is the same noise as in the phase-field model
a5cos21(ẑ•n̂) is the angle of the normal measured from t
z axis.

V. DENDRITIC SIDEBRANCHING

In this section, we simulate the phase-field model defin
by Eqs.~42! and~53! to investigate sidebranching characte
istics for different noise levels and a fixed dimensionle
undercoolingD[(TM2T`)/(L/c)50.55, whereT` is the
initial temperature of the melt. We then compare these
sults quantitatively with the predictions of the linear WK
theory that corresponds to the sharp-interface model defi
by Eqs.~57!–~59!.

A. Numerical results

Test simulations were first carried out with both noisesu

andqW , and with only the conserved noiseqW . We found that
time-averaged sidebranching characteristics were iden
for the two cases within our numerical resolution. This fin
ing shows that fluctuations which become amplified to p
duce sidebranches are on length scales much larger tha
interface thickness, and thus driven solely by the bulk no
in agreement with expectation~see Sec. I and@27#!. Conse-
quently, all the results presented in this section were
tained with simulations where noise is added only to the h
transport equation~42!. This represents a non-negligibl
computational saving for long simulation runs~i.e., two in-
stead of three random numbers per site at each time ste!.

TABLE I. List of the phase-field computational parameters us
in dendritic growth simulations. These parameters yield an effec
3% anisotropy in surface energy and a diverging interface kin
coefficientm as defined here in Eq.~3!.

Dx 0.8
Dt 0.06
D 2
L 3.268

d̄0
0.27

e4 0.03266
ee 0.03
d 0.046
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PRE 60 3621PHASE-FIELD MODEL OF DENDRITIC . . .
The development of a dendrite and its sidebranches f
a small initial seed is illustrated in Figs. 2~a! and 2~b! for two
different noise levels. These simulations were carried ou
a large 120031200 lattice with no-flux boundary condition
and, as initial condition,u50 andf51 inside a small circle
in the lower left-hand corner of the quadrant andu52D and
f521 outside this circle. Note that in Fig. 2~b! the noise is
sufficiently large to disturb the steady-state growth of the
which can be deduced from the fact that the vertical bra
has outgrown the horizontal branch in this case. Since
tips do not interact via the diffusion field at this underco
ing, i.e., the separation between the tips is much larger t
the diffusion length, this difference can only be due to noi
This effect is negligible for the smaller noise level@Fig. 2~a!#
where the two tips grew at nearly the same rate.

To investigate sidebranching, we restrict our attention
small noise levels (Fu52.531025 andFu52.531024) with
a well-defined steady-state tip structure. The symme
growth of one tip about thez axis ~i.e., half the dendrite with
reflection symmetry! is simulated on lattices of size 30
3400 and 3003600 with no-flux boundary conditions for
respectively, the larger and smaller noise amplitude~where
sidebranches form further behind the tip!. The same initial

FIG. 2. Morphological development of a solid seed forD
50.55 and two different conserved noise amplitudes:~a! Fu

51024, and ~b! Fu51023. Other computational parameters a
listed in Table I. The interfaces are plotted every 16 000 iteratio
m

n

,
h
e

n
.

o

ic

condition is used as in Fig. 2. As in Ref.@21#, we periodi-
cally translate the entire structure in the opposite direction
growth to allow long simulation runs to be carried out in t
smallest lattice size possible. Of course, we make sure
the sidebranching activity is not affected by this proced
by choosing a reasonable buffer larger than the diffus
length, and by carrying out test runs with larger lattice siz
The constraint of symmetric growth prevents us from inv
tigating the correlation of the sidebranching activity on o
posite sides of the growth axis, which has been exami
experimentally. However, it permits a more efficient inves
gation of the sidebranching amplitude and wavelength wh
can be compared to analytical predictions.

To calculate these two quantities, we proceed in t
steps. First, we carry out a simulation without noise to obt
a ‘‘reference’’ steady-state~needle crystal! shape, without
sidebranching. It is useful to measure this shape by the h
zontal distancex0(z) of the interface measured from the ve
tical growth axis as a function of the distancez behind the
tip. This distance is calculated by numerical interpolation
the f50 contour. The steady-state operating state of
dendrite is defined in terms of the dimensionless tip veloc
and radius

Ṽ5Vd̄0 /D, ~60!

r̃5r/d̄0 . ~61!

For the present choice of undercooling and anisotropy,
find that Ṽ5Vd0 /D'0.011 andr̃5r/d0'21.8. These re-
sults are in excellent quantitative agreement with the ex
benchmark predictions of solvability theory~valid for an ar-
bitrary anisotropy! obtained by solving numerically the two
dimensional~2D! steady-state growth sharp-interface equ
tions by boundary integral method@21,35–38#. Second, we
add the conserved noise to the heat equation and calc
the time-dependent shape,x(z,t), with sidebranching
present. Snapshots of noisy shapes superimposed on
noiseless shape are illustrated in Fig. 3. Examples of t
traces ofx(z,t) for two different distances behind the tip a

s.

FIG. 3. Snapshots of the time-dependent dendrite shapes~solid
lines! in long simulation runs that focus on the growth of one tip f
D50.55 and the parameters of Table I. The noiseless shape~dashed
line! is superimposed for comparison. The noise levels areFu

52.531025 in ~a! and Fu52.531024 in ~b!. Note that side-
branches form further behind the tip for the smaller noise level
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3622 PRE 60ALAIN KARMA AND WOUTER-JAN RAPPEL
shown in Fig. 4. In addition, an example of the nois
averaged power spectrum of a long time trace is shown
Fig. 5. This spectrum was calculated by subdividing
complete time interval into several equal subintervals, th
calculating the power spectrum for each subinterval, and
nally taking the average of these power spectra.

In terms of the above quantities, the root-mean-squ
amplitude of sidebranches is simply given by

A~z!5A^@x~z,t !2x0~z!#2&, ~62!

where the average is over time. This quantity is plotted vz
in Fig. 6 for two different noise levels. To obtain good st
tistics, we typically simulated a total time of 2000V/r which
took 200–350 CPU hours on a high end workstation. T
mean spacing between sidebranches~sidebranching wave
length! ^l(z)& can be calculated in two ways. One wa
which corresponds more directly to the way in which th
quantity is calculated in the WKB theory discussed below
to define

FIG. 4. Horizontal position of the interface measured from
vertical growth axis as a function of dimensionless time at 20 an
40 tip radii behind the tip. The parameters are the same as in
3~a!.

FIG. 5. Noise-averaged power spectrum ofx(z,t) at uzu/r540
for Fu52.531025.
-
in
e
n
-

re

e

s

^l~z!&5
2pV

vc~z!
, ~63!

where vc is the peak frequency of the power spectrum
x(z,t), averaged over sufficiently long time. An alternat
and faster way, which avoids calculating the power sp
trum, is to count the numberN(z) of extrema ofx(z,t) in a
long time interval t1<t<t2. Simple node counting then
leads to the relation

^l~z!&5
2V~ t22t1!

N~z!
. ~64!

For the spectrum of Fig. 5, these two methods yield sim
values:^l(z)&/r'15 as calculated from Eq.~63! with vc
'0.42 extracted from Fig. 5 andl(z)/r513.5 as calculated
numerically from Eq.~64!. Consequently, we have used E
~64! to calculate^l(z)& vs z and the result for the lowes
noise level is shown in Fig. 7.

at
ig.

FIG. 6. Root-mean-square amplitude of sidebranches as a f
tion of distance behind the tip for two different noise levels in t
simulations ~solid lines!. Superimposed are dashed lines cor
sponding to the analytical predictions of Eq.~65!.

FIG. 7. Mean spacing of sidebranches as a function of dista
behind the tip in the simulation forFu52.531025 ~solid line!,
analytically predicted by Eq.~66! ~dashed line! and predicted on the
basis of stretching~dash-dotted line!.
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PRE 60 3623PHASE-FIELD MODEL OF DENDRITIC . . .
B. Comparison with linear WKB theory

Langer @10# and Brener and Temkin@11# have analyzed
noise-induced sidebranching in three dimensions for spe
needle crystal shapes~i.e., x;z1/2 andx;z3/5). It is straight-
forward to extend their analyses, based on a WKB appro
to an arbitrary needle crystal shape,x0(z), in d dimension
@39#. We shall only state here the final results necessar
interpret our simulations. The expressions for the si
branching amplitude and wavelength are given, respectiv
by @39#

Ā~ z̄!5S̄expS 2

3 F x̄0
3

3 s* z̄
G 1/2D , ~65!

^l̄~ z̄!&5
2p

v̄c

5 pF12s* z̄

x̄0
G 1/2

, ~66!

where we have defined the scaled quantitiesx̄05x0 /r, z̄5

2z/r, Ā5A/r, l̄5l/r, v̄c5vcr/V, the dimensionless
noise amplitudeS̄, given by

S̄25
2Fu D

r11d V
5

2Fu

d̄0
d r̃11d Ṽ

~d52,3!, ~67!

and

s* [
2Dd̄0

r2V
5

2

r̃2Ṽ
. ~68!

It is easy to check that Eqs.~65! and ~66! reduce to the
earlier results of Refs.@10,11# if specific shapes~parabola
and 3/5 law! are substituted into them. Note that if we co
vert back to dimensional units by lettingr→r/W, V
→Vt/W, andD→Dt/W2, in Eq.~67!, we obtain the expres
sion

S̄25
2kBTM

2 c D

L2r11d V
, ~69!

which is dimensionless if one interpretsL andcTM to have
dimension of energy/(length)d. Of course, this interpretation
is only physically meaningful in three dimensions where E
~69! becomes identical to the definition ofS̄ in Ref. @10#.
Therefore, in the present study we evaluateS̄ directly from
Eq. ~67! to compare simulations and theory. Ford̄050.27

~Table I! and the aforementioned selected values,Ṽ'0.011

and r̃'21.8, we obtainS̄'0.24Fu and s* '0.383. ~Note
that s* is larger here than in experiment due to both t
large value of anisotropy which produces a pointy tip, a
the fact thats* is larger in 2D than 3D for the same aniso
ropy.! The analytical predictions for the sidebranching a
plitude and wavelength are then simply obtained by putt
these values into Eqs.~65! and~66! together with the steady
state interface shape,x̄0( z̄), measured in the noiseless phas
field simulation~dashed lines in Fig. 3!.

Figures 6 and 7 show that the amplitude and wavelen
measured in the phase-field simulations with noise are
c

h,

to
-
y,

.

d

-
g

-

th
in

good overall quantitative agreement with the analytical p
dictions even thoughs* is not much smaller than one. Th
amplitude in the simulations is relatively well predicted b
Eq. ~65!, up to a certain distance behind the tip after whi
the two curves depart from each other. This departure m
be due to nonlinear effects which become important wheĀ
becomes of order unity. In addition, it should be emphasi
that the prefactor of Eq.~65! is only known up to some
multiplicative factor of order unity. Consequently, what
more relevant here is that the amplitudes in simulation a
theory are of comparable magnitude, rather than the fact
the numerical and theoretical curves in Fig. 6 seem to alm
perfectly overlap up toz̄.20, which may be coincidental.

The wavelength in the simulations is only about 30
larger than predicted by Eq.~66! in the region~20 to 40 tip
radii behind the tip! where sidebranches become visib
However, this wavelength increases initially faster with d
tance behind the tip than predicted. One possible explana
for this faster rate of increase is that perturbations gener
get stretched as they travel along the sides of curved fro
@4–6#. To test this possibility, let us calculate the pure
deterministic change of wavelength of a perturbation initia
at the tip due to stretching. The rate of stretching is given
@4–6#

1

l

dl

dt
5

]Vt

]s
, ~70!

whereVt5V sina is the tangential velocity of advection o
the perturbation ands measures the arc length along the i
terface. Equation~70! is strictly valid in the WKB limit
wherel is small compared to the local radius of curvatu
(1/k) of the interface. We can solve Eq.~70! by using the
change of variabledt5dz/V. Equation~70! becomes then
d(ln l)5sin 2ada/2, which can be easily integrated. Furthe
more, using the geometrical relation, cosa51/@1
1(dx̄0 /dz̄)2#1/2, we obtain

l̄~ z̄!5l̄` expF2
1

2

~dx̄0 /dz̄!2

11~dx̄0 /dz̄!2G , ~71!

where we have definedl̄` to be the saturation value ofl̄ far
behind the tip~i.e., z̄→`). It should be emphasized that th
value of l̄` cannot be predicted alone by Eq.~71! since this
equation does not describe the selective amplification
noise at the tip. The prediction of^l̄& at a given distance
from the tip still requires the WKB analysis. Equation~71!,
however, can be used to estimate the relative change
wavelength due to stretching. Thus it is reasonable to use
value ofl̄` observed in simulation~i.e., the saturation value
of the solid line at largeuzu in Fig. 7! as input into Eq.~71!
in order to test whether the faster increase in spacing in
tip region observed in simulation, as compared to the W
prediction, may be due to stretching. For this purpose,
have plotted in Fig. 7 the prediction of Eq.~71! with the
value ofl̄`'13.5 that corresponds to the largeuzu plateau of
the solid line. We can see that this prediction gives indee
better agreement with simulation near the tip for the me
spacing, which indicates that stretching is likely to be t
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3624 PRE 60ALAIN KARMA AND WOUTER-JAN RAPPEL
origin of the disagreement between simulation and the W
theory in this region. Indeed, this stretching effect has b
neglected in the WKB calculations to date that are o
strictly valid in the far tip region (z̄@1), where this effect is
negligibly small. It should, however, be possible in the futu
to carry out a more elaborate noise amplification calculat
that incorporates this effect and that should in principle yi
an improved prediction of the sidebranch spacing near
tip.

Finally, we note that the sidebranching wavelength
about an order of magnitude larger than the tip radius in
simulations, whereas it is only a factor of 2 or 3 in the e
periments of Huang and Glicksman in succinonitrile@3#.
This difference is due to the fact thats* is much larger here
than in these experiments because of the larger value o
isotropy used in simulations.

VI. CONCLUSIONS

We have presented a phase-field model of the solidifi
tion of a pure melt that incorporates thermal noise quant
tively. From a computational standpoint, there are two m
conclusions regarding the incorporation of this noise. Fi
one can retain the freedom to choose the interface thick
at will as long as the noise magnitude (Fu) that enters in the
phase-field model is scaled appropriately@Eq. ~46!#. There-
fore, it remains possible to carry out dramatically more e
cient computations without interface kinetics by choosingd̄0
substantially smaller than unity, as in our earlier stud
without noise@21#. Secondly, for typical growth condition
at low undercooling~and, more generally, below a critica
velocity that depends on the attachment kinetic coeffici
m), the conserved noise in the heat current is the most
evant one. This noise drives long-wavelength interface fl
tuations that become amplified to a macroscopic scale by
morphological instability on the sides of dendrites. In co
trast, the nonconserved noise in the evolution equation fof
drives short-wavelength fluctuations that are damped and
not affect sidebranching, as predicted by a sharp-interf
analysis @27# and confirmed by our simulations. Cons
quently, this noise can be left out in computations below t
critical velocity.

We have applied this model to carry out a detailed qu
titative study of the initial stage of sidebranch formation d
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ing dendritic growth. We conclude that the root-mean-squ
sidebranching amplitude is reasonably well predicted by
existing linear WKB theory of noise amplification, eve
though the value ofs* in our simulations is not small. In
addition, the WKB theory gives a reasonable estimate of
spacing between sidebranches at the distance behind th
where they become of amplitude comparable to the tip
dius. It does not, however, accurately predict the functio
form of the variation of this spacing with distance behind t
tip for the present phase-field simulations. This leaves o
the question as to why the sidebranch amplitude is be
predicted in the tip region than the sidebranch spacing by
existing WKB theory, at least for the present simulations.
the simulations, this spacing increases faster behind the
than predicted by this theory. We have argued on the bas
a simple analytical estimate that this faster rate of incre
may be due to stretching but a more elaborate noise am
fication calculation that incorporates this effect is needed
validate this conjecture. Nonetheless, the overall quantita
agreement between theory and simulation can be viewe
be reasonably satisfactory given the lack of any adjusta
parameters and the intrinsic limitations of the WKB appro
mation.

A more stringent test of this theory would require us
extend the present study to a range of smaller anisotropy,
hence smallers* , where a comparison between this theo
and simulations is more justified. Another interesting pro
lem that was not investigated here is the evolution of
sidebranch spacing even further away from the tip due to
growth competition between sidebranches@11,40#. Finally,
since this study has been restricted to two dimensions,
cannot yet answer the important question of whether ther
noise alone is responsible for the sidebranching activity
served in experiment. Simulations in three dimensio
should provide a clearcut answer to this question.
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